当前位置:雅思无忧 > 雅思阅读 > 正文

雅思阅读材料练习:Mars

更新:2021年08月01日 21:17 雅思无忧

雅思考试主要是通过对考生听、说、读、写四个方面英语能力的考核,综合测评考生的英语沟通运用能力,实现“沟通为本的”考试理念。对于雅思考生来说,也有很多考试难点和政策盲区需要帮助解答。今天雅思无忧网小编准备了文章雅思阅读材料练习:Mars,希望通过文章来解决雅思考生这方面的疑难问题,敬请关注。
雅思阅读材料练习:Mars

Missions to Mars: a rocky road to the Red Planet

Missions to Mars may have stalled, but the search for signs of life continues – by *ysing the 'DNA' of Martian meteorites, writes Roger Highfield.

Are we alone in the co*os? For centuries, that question has been purely speculative. But in recent years scientists have gathered evidence of alien life on Mars that is as tantalising as it is inconclusive.

We thought we might have a definitive answer in 2003, when Britain's £50 million Beagle 2 probe was scheduled to touch down on the Red Planet, carrying an instrument that could have detected traces of living things. But we never heard from the little probe again.

The loss was a massive disappointment to the professor behind the mission, Colin Pillinger of the Open University. During the late Nineties, I had seen him doggedly enlist support for the project from fellow space scientists, the government and even the likes of Blur and the artist Damien Hirst.

The European Space Agency promised Prof Pillinger that there would be a follow-up programme, with a mission as soon as 2007. That date slipped back again and again. The Mars mission is now scheduled for 2021, when a joint mission with Nasa is due to send two rovers to search for life. Towards the end of this year, Nasa will launch the Mars Science Laboratory mission, which will set down a rover called Curiosity that will study whether conditions have ever been favourable for microbial life.

There is, however, another way to answer this giant question. In 1989, Prof Pillinger's team found organic material, typical of that left by the remains of living things on Earth, in a meteorite called EETA79001. This is one of a relatively *all number of rocks – fewer than 100 – that chemical *ysis reveals must have been blasted off the surface of the Red Planet by an asteroid impact and then subsequently fallen to Earth.

The Open University team stopped short of saying they had discovered life on Mars – but, in 1996, Everett Gibson and his colleagues at Nasa announced that they believed that they had discovered a fossil no bigger than a nanometre in another meteorite, known as ALH84001, which had fallen to Earth roughly 13,000 years ago. Other researchers, studying the data collected by America's Viking landers, which touched down in 1976, concluded that life signs had been detected then, too.

Sceptics – and there are many – remain convinced that inorganic (non-living) processes could have produced the same data and features that have been interpreted by some as signs of microbial life. But how can we even tell these rocks came from Mars?

Well, a few days ago, I found myself back at the Open University, to test another Martian meteorite, which we will offer as a prize to readers of New Scientist in the next issue. I bought it from Luc Labenne, a well-known collector based in France. It was a piece of a rock that crashed into the desert in Algeria, hence the designation NWA2975 ("North-West Africa").

One measure of its rarity is its astonishing value – one 102g sample of the same rock is on sale for $100,000 (our prize is 1.7g). To ensure that it was genuine, I enlisted the help of Prof Pillinger's colleagues. Andy Tindle studied a slide of NWA2975 provided by Ted Bunch of Northern Arizona University, a member of the team who originally described the meteorite in 2005. This revealed a mixture of rounded desert sand grains and various minerals of the kind found on Mars, such as pyroxene, which contains manganese and iron in a ratio typical of the Red Planet.

To make absolutely sure, Richard Greenwood and Jenny Gibson removed around ten-thousandths of a gram for further *ysis. Using an instrument called a mass spectrometer (think of it as an atomic weighing machine), they studied the relative abundance in the meteorite's silicate minerals of three isotopes of oxygen – oxygen-16, oxygen-17 and oxygen-18. They were released for *ysis with the help of a laser and a powerful reagent.

Because the relative abundance of these isotopes varies throughout the solar system, it is possible to use them like a DNA test in order to identify whether a meteorite comes from the Moon, an asteroid or Mars. In this case, they found a slight excess in the abundance of oxygen-17 and oxygen-18 compared with rocks from Earth, just as we would expect from a Martian rock.

What this tells us is that we don't have to go to Mars to get all kinds of insights into the Red Planet. We can reveal a lot simply by studying its meteorites to reveal data from the composition of the atmosphere to the presence of water. And, of course, these meteorites offer us a welcome opportunity to search for life signs, as we wait for the

next mission to land on the planet's dusty, pink surface.

以上是小编为大家准备的“雅思阅读材料练习:Mars。”的相关内容,希望为大家提供一些帮助,在这里小编预祝各位考生在雅思考试中顺利拿到自己的理想分数。


雅思考前能力水平测试(0元领课)

考前测评 了解真实的雅思水平

以上就是雅思无忧网为您准备的访问雅思无忧网(https://www.yasi.cn/),了解更多雅思考试新消息,新动态。

雅思培训
免责声明:文章内容来自网络,如有侵权请及时联系删除。
推荐阅读
标签 - 专题
  鲁ICP备18049789号-14

2022雅思无忧网版权所有 All right reserved. 版权所有

警告:未经本网授权不得转载、摘编或利用其它方式使用上述作品